201 research outputs found

    Terrestrial water load and groundwater fluctuation in the Bengal Basin

    Get PDF
    Groundwater-level fluctuations represent hydraulic responses to changes in groundwater storage due to aquifer recharge and drainage as well as to changes in stress that include water mass loading and unloading above the aquifer surface. The latter ‘poroelastic’ response of confined aquifers is a well-established phenomenon which has been demonstrated in diverse hydrogeological environments but is frequently ignored in assessments of groundwater resources. Here we present high-frequency groundwater measurements over a twelve-month period from the tropical, fluvio-deltaic Bengal Aquifer System (BAS), the largest aquifer in south Asia. The groundwater level fluctuations are dominated by the aquifer poroelastic response to changes in terrestrial water loading by processes acting over periods ranging from hours to months; the effects of groundwater flow are subordinate. Our measurements represent the first direct, quantitative identification of loading effects on groundwater levels in the BAS. Our analysis highlights the potential limitations of hydrogeological analyses which ignore loading effects in this environment. We also demonstrate the potential for employing poroelastic responses in the BAS and across other tropical fluvio-deltaic regions as a direct, in-situ measure of changes in terrestrial water storage to complement analyses from the Gravity and Climate Experiment (GRACE) mission but at much higher resolution

    Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone

    Get PDF
    The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or ‘stable’ plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load

    Continental mass change from GRACE over 2002-2011 and its impact on sea level

    Get PDF
    Present-day continental mass variation as observed by space gravimetry reveals secular mass decline and accumulation. Whereas the former contributes to sea-level rise, the latter results in sea-level fall. As such, consideration of mass accumulation (rather than focussing solely on mass loss) is important for reliable overall estimates of sea-level change. Using data from the Gravity Recovery And Climate Experiment satellite mission, we quantify mass-change trends in 19 continental areas that exhibit a dominant signal. The integrated mass change within these regions is representative of the variation over the whole land areas. During the integer 9-year period of May 2002 to April 2011, GIA-adjusted mass gain and mass loss in these areas contributed, on average, to −(0.7 ± 0.4) mm/year of sea-level fall and + (1.8 ± 0.2) mm/year of sea-level rise; the net effect was + (1.1 ± 0.6) mm/year. Ice melting over Greenland, Iceland, Svalbard, the Canadian Arctic archipelago, Antarctica, Alaska and Patagonia was responsible for + (1.4±0.2) mm/year of the total balance. Hence, land-water mass accumulation compensated about 20 % of the impact of ice-melt water influx to the oceans. In order to assess the impact of geocentre motion, we converted geocentre coordinates derived from satellite laser ranging (SLR) to degree-one geopotential coefficients. We found geocentre motion to introduce small biases to mass-change and sea-level change estimates; its overall effect is + (0.1 ± 0.1) mm/year. This value, however, should be taken with care owing to questionable reliability of secular trends in SLR-derived geocentre coordinates

    Unification of New Zealand's local vertical datums: iterative gravimetric quasigeoid computations

    Get PDF
    New Zealand uses 13 separate local vertical datums (LVDs) based on normal-orthometric-corrected precise geodetic levelling from 12 different tide-gauges. We describe their unification using a regional gravimetric quasigeoid model and GPS-levelling data on each LVD. A novel application of iterative quasigeoid computation is used, where the LVD offsets computed from earlier models are used to apply additional gravity reductions from each LVD to that model. The solution converges after only three iterations yielding LVD offsets ranging from 0.24 m to 0.58 m with an average standard deviation of 0.08 m. The so-computed LVD offsets agree, within expected data errors, with geodetically levelled height differences at common benchmarks between adjacent LVDs. This shows that iterated quasigeoid models do have a role in vertical datum unification
    • 

    corecore